Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson's disease
نویسندگان
چکیده
Despite intensive research, the etiology of Parkinson's disease (PD) remains poorly understood and the disease remains incurable. However, compelling evidence gathered over decades of research strongly support a role for mitochondrial dysfunction in PD pathogenesis. Related to this, PGC-1α, a key regulator of mitochondrial biogenesis, has recently been proposed to be an attractive target for intervention in PD. Here, we showed that silencing of expression of the Drosophila PGC-1α ortholog spargel results in PD-related phenotypes in flies and also seem to negate the effects of AMPK activation, which we have previously demonstrated to be neuroprotective, that is, AMPK-mediated neuroprotection appears to require PGC-1α. Importantly, we further showed that genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel is sufficient to rescue the disease phenotypes of Parkin and LRRK2 genetic fly models of PD, thus supporting the proposed use of PGC-1α-related strategies for neuroprotection in PD.
منابع مشابه
The Drosophila PGC-1α Homolog spargel Modulates the Physiological Effects of Endurance Exercise
Endurance exercise is an inexpensive intervention that is thought to provide substantial protection against several age-related pathologies, as well as inducing acute changes to endurance capacity and metabolism. Recently, it has been established that endurance exercise induces conserved alterations in physiological capacity in the invertebrate Drosophila model. If the genetic factors underlyin...
متن کاملSpargel/dPGC-1 is a new downstream effector in the insulin-TOR signaling pathway in Drosophila.
Insulin and target of rapamycin (TOR) signaling pathways converge to maintain growth so a proportionate body form is attained. Insufficiency in either insulin or TOR results in developmental growth defects due to low ATP level. Spargel is the Drosophila homolog of PGC-1, which is an omnipotent transcriptional coactivator in mammals. Like its mammalian counterpart, Spargel/dPGC-1 is recognized f...
متن کاملStem Cells Application in Modeling of Human Genetic Diseases
The use of animal models in modeling of human genetic disease has many advantages. In some cases, however, this method may not be applicable due to some limitations, such as differences in tissue composition, anatomy and physiology of humans and animals. Isogenic human disease models are a population of cells that are selected or engineered to model a specific genetic disease, in vitro. They ar...
متن کاملEmerging functional similarities and divergences between Drosophila Spargel/dPGC-1 and mammalian PGC-1 protein
Peroxisome Proliferator Activated Receptor Gamma Co-activator-1 (PGC-1) is a well-conserved protein among all chordates. Entire Drosophila species subgroup carries a PGC-1 homolog in their genome called spargel/dPGC-1 showing very little divergence. Recent studies have reported that significant functional similarities are shared between vertebrate and invertebrate PGC-1's based on their role in...
متن کاملMutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization.
OBJECTIVE Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular ene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of Aging
دوره 55 شماره
صفحات -
تاریخ انتشار 2017